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Short Papers

Efficient Computation of the Steady-State Response of
Periodic Nonlinear Microwave Circuits Using a
Convolution-Based Sample-Balance Technique

P. J. C. Rodrigues, M. J. Howes, and J. R. Richardson

Abstract —This paper describes an efficient and robust approach to
the computation of the steady-state response of periodic nonlinear
microwave circuits. The problem of solving a set of differential equa-
tions, in this case, is converted into that of solving a system of nonlinear
algebraic equations using a technique which is termed convolution-based
sample balance. Although exact in all cases for which harmonic-balance
techniques are exact, this technique does not require the use of discrete
Fourier transforms, and calculating the Jacobian is straightforward. For
the solution of the resulting system of nonlinear equations, an efficient
and yet very robust algorithm has been developed. In the examples
given, savings in computational effort of over 85% are reported when
this algorithm is compared with Newton’s method.

I. INTRODUCTION

Harmonic-balance (HB) techniques are probably the most
widely used techniques for calculating the steady-state response
of nonlinear microwave circuits. They are based on transforming
the problem of solving a set of differential equations into that of
solving a system of nonlinear algebraic equations. A key factor
for the successful implementation of HB techniques is therefore
the algorithm used to solve the system of equations, and several
relatively fast relaxation algorithms have been used for this
purpose. However, it is generally agreed that robust, general-
purpose algorithms should use Newton’s method or its varia-
tions, either directly solving the system of equations or solving a
related optimization problem [1], [2].

Sample-balance (SB) techniques [1] differ from HB tech-
niques by expressing the state variables in the time domain
rather than in the frequency domain. The two state variable
representations, however, are equivalent since one is the Fourier
transform of the other. The convolution-based sample-balance
(CBSB) technique is therefore directly related to HB tech-
niques, but its formulation is simpler, especially when the
Jacobian is required. Contrary to other SB techniques [1], (3],
neither base functions nor discrete Fourier transforms are
needed.

For the solution of the resulting system of nonlinear equa-
tions, an efficient algorithm has been developed. Although it is a
general-purpose algorithm for the solution of systems of nonlin-
ear equations, it is particularly suitable for the kind of systems
that arise when HB or SB techniques are applied to the solution
of nonlinear circuits. The performance of the CBSB technique
together with this algorithm is demonstrated through the simula-
tion of a Schottky diode and a MESFET. The combination
results in excellent convergence properties, and considerable
savings are achieved by this algorithm when compared with
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Newton’s method, with no loss of robustness. Results show over
85% reduction in computational effort. In some situations, fur-
ther savings are also possible by not calculating all the columns
of the Jacobian and by using interpolation. The computational
effort does not change even in highly nonlinear circuits and this
permits the approach described in this work to handie a wide
range of situations efficiently.

II. Tue ConvoLuTION-BASED SAMPLE-BALANCE
TECHNIQUE

The CBSB technique is a SB technique [1] in which an
appropriate convolution theorem is used to bypass the need to
work in both the frequency and the time domain. In different
contexts, convolution integrals are used as aids in the solution of
nonlinear circuits; for instance, they are used in [4] with a
time-domain method and in [5] with an HB method.

As in piecewise HB techniques, the circuit to be analyzed is
initially divided into two parts, generally called linear and non-
linear subcircuits (Fig. 1(a)). The only restriction is that the
linear part contains only linear circuit elements and the division
is assumed to be made through P ports. The equivalent circuit
of Fig. 1(b) can be found for each port at frequencies w,, = mw,,
m=10,1,---, M. This is done using Norton’s theorem and the
superposition theorem, and [Y"*(®,,)] is the ¥ matrix of the
linear part with all sources turned off at frequency w,,;
the U'(w,,)s are the Norton current sources. In steady-state,
the currents through the linear elements in Fig. 1(b) (admit-
tances and voltage-controlled current sources) have the form

M

L Y(w)V(0,)exp(jo,0).
m=-M

(1) = ey

If T=27/w,, the convolution theorem for periodic signals [6]
can be used to express i(¢) in terms of time-domain quantities:

1
i(t)=?f0Tu(t—'r)y'(fr)d7 )
where
M
Y= L Yoo (o) ©)

can be recognized as the response (truncated to frequency w,,)
to an impulse train with frequency w,, although this is irrelevant
since (3) provides a simple way of calculating y'(¢). For both
v(¢) and y'(¢) sampled at N evenly distributed time samples and
t,=nT /N, (2) can be discretized as

N-—-1

2 v(t,_)v(4)

k=0

) 1 N-1
l(tn)=ﬁk§00(tn—k)y,(tk)= (4)

where y(t,)}= y'(¢,)/N. The fundamental characteristic of (4) is
that it is exact if both v(¢) and y'(¢+) are sampled above the
Nyquist rate. This is a direct consequence of the convolution
theorem for discrete Fourier transform pairs [6] and means that
the CBSB technique is exact in all cases for which HB tech-
niques are exact. This condition requires that M < N /2. An-
other important aspect is that the y(¢,)’s are constants and need
be computed only once, before the simulation starts.
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Fig. 1. (a) Circuit partitioning. (b) Equivalent circuit of linear part at

port r and frequency w,,.

If Kirchhoff’s current law is applied at each port and instant
in time, t,, n=0,---,N—1, the discretized problem can be
conveniently written with the aid of (4) as

I L o1 il wt
D : N =0 (5
yPl sz yPP 4 iP u?
where, using (4), y™* is a Toeplitz matrix defined as
Yoo YN-1 o0
yr=l : : (6)
YN-1 YN-2 YO

with y*=y™(¢,). The v™’s, i"’s, and u"’s are N-dimensional

vectors representing respectively port voltages, port currents,
and source currents. For instance, if v, = v'(t,),

(M

If the variables that control voltages and currents at the ports of
the nonlinear subcircuit are stacked in a PN-dimensional vector
x, (5) can be finally expressed in a compact form, with the
obvious definitions, as

F(x)=y-v(x)+i(x)—u=0. 8)

Equation (8) defines a system of nonlinear equations of order
PN. In HB techniques, the equivalent of (8) involves frequency-
domain as well as time-domain quantities since nonlinear cir-
cuits are invariably described in the time domain. Here, only
time-domain variables and expressions are present.

Y matrices may be restrictive with respect to the kind of
circuit that can be analyzed since they are not always well
defined. In such cases, similar formulations can be developed
using other descriptions of the linear circuit (Z matrices, S
matrices, etc), although it was found that ¥ matrices are able to
handle most of the usual situations.

Ur:(v()’“"vlzl—l)r'

III. THE ALGORITHM FOR SOLVING THE SYSTEM OF
NONLINEAR EQUATIONS

Quasi-Newton or modification methods [7] have recently been
considered for microwave applications [9], [10] and when com-
pared with Newton’s method, they require much less computa-

tional effort per iteration but have a slower rate of convergence.
Systems of nonlinear equations can be viewed as n-dimensional
functions for which n-dimensional roots are required. Since the
goal is to find the root with minimum effort, which method
performs best depends on the particular problem being solved.
The usual measure of computational effort is the number of
times the function is evaluated in the process of finding its root.
This includes function evaluations required to calculate deriva-
tives numerically. In particular, evaluating v(x) and i(x) in (8) is
usually time consuming, especially if physical models are used.

Reference [11] provides useful practical information on meth-
ods for solving systems of nonlinear equations. Several different
algorithms are compared in a number of different problems.
Algorithms based on quasi-Newton methods were found to
perform better than those based on Newton’s method in prob-
lems in which either the number of equations is large or the
Jacobian is expensive to calculate. Since these conditions are
inevitably present in (8), it was decided to use a quasi-Newton
method.

The most representative and well known quasi-Newton
method is probably Broyden’s method [12] and its performance
can be improved if it is used with projected updates [13].
Broyden’s method with projected updates forms the basis of the
algorithm described in this section and is termed the modified
Broyden’s method.

Quasi-Newton methods have the general form [7]

x"“=x"—A"-F(xi‘) 9

where A% is a matrix that is expected to be close to J~'(x*)
(the inverse of the Jacobian at x*) in some norm. One problem
with quasi-Newton methods is that, at each iteration, A* is not
updated in directions orthogonal to A* = x**!— x* (the step
taken). This problem can eventually lead to the failure of the
method. One way of avoiding this problem is described in {14]
and consists in taking occasional steps in directions linearly
independent of the last #*’s. These linearly independent steps
allow A* to resemble the inverse of the Jacobian in all direc-
tions and have been used along with the original Broyden
method in the context of optimization [9]. A key issue regarding
overall efficiency is when to take these linearly independent
steps. The modified Broyden method provides a built-in criteria
for the application of linearly independent steps. When the last
h*’s are not sufficiently linearly independent, the method goes
through what is called a restart in [13], and a linearly indepen-
dent step is therefore taken whenever the method restarts. The
directions of the lincarly independent steps are generated as
described in [14].

Fig. 2 is a representation of the algorithm. For additional
robustness, a Newton iteration is attempted when the modified
Broyden method fails to reduce the norm of the function more
than L,, consecutive times. L, is usually set to 1 or 2. In order
to avoid excessively large step sizes, which can lead to failure of
any iterative method, the maximum norm of A* is limited [8).

A subroutine, SOLVNL, was developed based on the algo-
rithm of Fig, 2 which can also implement Newton’s method with
minor modifications. SOLVNL has been tested and compared
with Newton’s method for several problems [11]-[13]. The re-
sults were excellent with respect to both efficiency and ability to
find a solution starting from a poor estimate of the root.

IV. ArPROXIMATE EVALUATION OF THE JACOBIAN
TurouGH THE USE OF INTERPOLATION

The derivatives needed to evaluate the Jacobian J of F(x)in
(8) can be calculated either numerically, or, when possible,
analytically. In this work, a numerical approach has been adopted
for reasons similar to those discussed in [10] and because the
use of physical models would make the analytical approach
cumbersome if not impossible. The numerical approach adopted
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Fig. 2. Diagram representing the algorithm of subroutine SOLVNL.

avoids unnecessary calculations and is not much slower than a
direct analytical evaluation of the derivatives, although the ana-
lytical approach is better with respect to accuracy. In general, an
n-dimensional system of equations requires 7 + | function evalu-
ations to calculate F(x) and J numerically. In this case, treating
the nonlinear devices in the nonlinear part individually greatly
simplifies this task. The Jacobian of F(x) is given by

J ov o
=y —+— 10
Y dx Odx ( )
where
3! i
1 F
ai | %* dx 3
Pyl B : (11)
9i* 3
ax! ax”

and
[ 0if dif
o axg  axky
el | (12)
Iy_1 N1

The quantity dv/dx is defined in a similar way. All blocks
defined by (12) can be calculated numerically by evaluating
F(x) once and simulating each individual nonlinear device an
extra pN times, where p is the number of device ports. This can
be much less than evaluating F(x) in (8) PN times. A useful
property of (10), which is used in Section V with the algorithm
of Section III and Newton’s method, is that J does not depend
on the sources.

The elements of the N X N matrices defined by (12) are not
completely independent. Because of their physical meaning,
0L,y /90X, should be a well-behaved function of j for fixed &
wflen N 1s large; it is expected, therefore, that this function can
be interpolated in j reasonably well. Based on this observation,
only some of the columns of (12) are calculated while the
remaining elements are interpolated diagonally. The interpola-
tion has to be performed in a wraparound fashion if either
column 0 or N —1 is not computed.

In order to make this strategy more effective, it was imple-
mented in a manner such that the columns evaluated and those
interpolated changed in a cyclic fashion every time the Jacobian
was required. In preliminary tests, both spline and linear inter-
polation were tried and the latter, since it showed more reliable
performance, was subsequently adopted. The distance between
columns actually calculated is denoted by IS in the next Section.
If IS =1, no interpolation is used.

V. REsuLTs

A general-purpose computer program, NLCKT, has been
developed using the CBSB technique and the subroutine
SOLVNL and this is general enough for equivalent-circuit as
well as physical models for a variety of devices to be included.
Derivatives are calculated using second-order backward finite-
difference expressions, which provide sufficient accuracy at N =
8 or greater. Higher order expressions can be added if needed
and time delays (as those between gate and drain of MESFETS)
can be easily handled with the aid of interpolation. The
Jacobian can be approximated as described in Section IV by
setting the parameter IS. In order to demonstrate the capabili-
ties of NLCKT, a Schottky diode and a MESFET model devel-
oped by other authors were simulated. No attempt to discuss the
accuracy of the results is made, and this is mainly a characteris-
tic of the models rather than of the methods of circuit analysis;
instead, attention is concentrated on the numerical performance
achieved. These two models provide a good test for NLCKT as
both include exponential diodes and nonlinear capacitances.

In all cases, the solution of the nonlinear system of equations
that results from using the CBSB technique is carried out using
the subroutine SOLVNL and, for comparison, Newton’s method
with the same parameters being used. Also, in problems in
which the source voltage varies, the solution and the last
Jacobian (see Section IV) of the previous source voltage are
used as initial values. The convergence criteria adopted through-
out are |F]<Err=10"% A and |h|<8=10"* V (Fig. 2), and
Euclidean norm is used.

A. Schottky Diode Simulation

The input impedance of the model of the Alpha Industries
diode DMC5504C-075 given in {15] was calculated in a 50 Q
system. Fig. 3 shows the circuit analyzed and the parameter
values used. As a test for robustness, the initial values were first
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TABLE 1
Numser of FuncTion EVALUATIONS REQUIRED To REACH THE SOLUTION IN SEVERAL CASES
NEWTON SOLVNL
IsS=1 IS=2 IS=3 IS=1 1s=2 IS=3
@ 137 100 79 63 65 53
() N=16 1164 1305 1586 212% 182 223
Gi) N=32 2204 1740 1462 258 242 237
*0.6 s of CPU time on an Amdahl V7 computer.
R, 10pF 10pF
l s s G D
|
z, | CramV, V0 8\1¢ S0 FET MODEL
| Cp v ILg(exp(av)-1) :; % 7. Vs0 8V, 10nH 1008
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| Vs 1 T 7v

Zin ‘;
2y~ 50 @ Com 0 12 pF

Gpm 0.04 pF V- 033y
11 n8 By~ 50 0
Ig= 065 mA Vo= 02
am 35 6 VT £~ 9.4 Gh
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Fig. 3. Model of the Schottky diode simulated and parameter values
used.

Norselising impedsnce: 50.00 ohms.

Fig. 4. Input impedance of the Schottky diode simulated for source
voltages from 0.1 to 3 V. The direction of increasing power is from left
to right.

set to their dc condition and the source voltage to 1 V. The
number of function evaluations required to reach the solution
for N =16 is shown in the first row of Table 1 for several cases.
The improvements achieved by the techniques described in this
paper are considerable.

The source voltage was then varied from 0.1 to 3 Vin 0.1 V
steps. Results for N =16 and N = 32 are also displayed in Table
I while the input impedance is given in Fig. 4. The improve-
ments achieved over Newton’s method are dramatic. It is also
clear that interpolating the Jacobian is more effective for N = 32,
The result for IS =2 and N =16, which corresponds to savings

Fig. 5. MESFET circuit simulated.
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Fig. 6. Fourier coefficients at fundamental frequency and second and
third harmonics of the drain current of the MESFET simulated as a
function of source voltage.

of over 83% when compared with Newton’s method, is remark-
able since an average of six function evaluations were required
to solve 30 systems of equations of order 16. Similar comments
do not apply for N = 32 since, in this case, the problem is clearly
oversampled.

B. MESFET Simulation

The MESFET model simulated is similar to that described in
[16]. The main difference is the expression for the drain current,
which was simplified to [17]

ig(vg,00) = B(v, + V7)) (1+ Avy) tanh (av,).  (13)

The saturation characteristics for a MESFET with parameters
given in [16] and for B=75mA/ V2V, =25V, A=001V"",
and a =18 V! were calculated. The MESFET is embedded in
the circuit of Fig. 5 and the frequency is 10 GHz. N was sct to
16, IS to 1, and the source voltage was varied from 0 to 10 V in
a total of 30 evenly spaced points. A total of 2930 function
evaluations were required by Newton’s method for the whole
task while SOLVNL needed only 314, corresponding to savings
of 89%. The absolute value of the Fourier coefficients of the
first three harmonics of the drain current are shown in Fig,. 6 as
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a function of the source voltage. The source voltage was deliber-
ately increased to unreasonable values to test the ability of the
program to cope with highly nonlinear situations, but even so
the number of function evaluations did not change significantly
with source voltage. (Similar tests performed with the diode
model led to the same conclusion.) This is in part due to the
relative insensitivity to nonlinearities of the structure of the
Jacobian in the CBSB technique, whereas, in contrast, Jacobians
in HB techniques change considerably in large-signal situations.
Also, the variables in SB techniques are automatically scaled to
the same level while in HB techniques the levels at the higher
frequencies considered should be orders of magnitude smaller
than the levels at the first few harmonics. Other tests confirmed
the excellent performance and robustness of the program
NLCKT.

VI. CoMMENTS ON EXTENSIONS OF THE TECHNIQUES
DEescriBED IN THis WORK

The CBSB technique can be extended to multitone analysis by
employing multidimensional [10] or quasi-periodic [18] Fourier
transforms since convolution theorems exist for both of these
[6], [19]. As both approaches rely on calculating derivatives in
the frequency domain, however, an extra convolution would
have to be performed.

Results from Section V suggest that the program NLCKT is
particularly efficient when a good estimate of the solution is
available. This indicates that NLCKT should be suitable for use
with continuation methods [20].

The subroutine SOLVNL can be modified to handle situa-
tions in which the Jacobian is ill-conditioned by using the ideas
described in [14]. This would further increase the range of
applicability of the approach described in this work.

The superiority of quasi-Newton methods over Newton’s
method for problems in which either the Jacobian is expensive
to calculate or the number of variables is large was established
in [11] and has been substantiated in circuit analysis applications
by the results in Section V. However, one possibility that has not
been investigated is the effect of having a sparse Jacobian. For
physical models, the computation time is dominated by comput-
ing F(x) and J but, for equivalent-circuit models, the computa-
tion time can become increasingly dominated by matrix handling
as the number of variables increases so that sparsity of the
Jacobian could then become a major factor. In piecewise
circuit-analysis techniques, the Jacobian is not sparse although,
by setting some elements to zero based on a physical criteria,
sparse-matrix techniques can be exploited in multitone problems
involving a large number of frequencies [21], [22]. In such
problems, this is certainly advantageous with respect to memory
space required. For an assessment of how this would change the
conclusions drawn in [11), the slowdown in the rate of conver-
gence caused by the use of an approximate Jacobian would have
to be known. As power levels increase, this slowdown eventually
degenerates into divergence, leading to the concept of dynamic
range of the sparse-matrix analysis mentioned in [21]. This
discussion can be illustrated by looking at the problem examined
in [21] and [22], which involves n = 3600 variables. The computa-
tion time per iteration of the matrix handling required in quasi-
Newton methods is proportional to n? while in Newton’s method
it is proportional to 1/3n3 [8]. In this problem, quasi-Newton
methods require 1200 times less computational effort in matrix
handling per iteration while savings of 550 times are claimed in
[22]. The times given in [21] indicate that, with the use of
sparse-matrix techniques, less than 1/30 of the total computa-
tional time is spent in matrix handling and therefore Jacobian
evaluation becomes the most demanding task. Assuming that
the Jacobian in this problem can be calculated analytically and
that the expressions for the derivatives are not too complex, the
Jacobian evaluation could be carried out “cheaply” in the sense

used in [11]. Therefore, in this problem, Newton’s method
combined with sparsc-matrix analysis should be superior to
quasi-Newton methods if the use an approximate Jacobian does
not significantly affect the rate of convergence.

VII. ConcLuUSIONS

A new and efficient approach to computing the steady-state
response of periodic nonlinear microwave circuits has been
presented. It combines a technique that is termed convolution-
based sample-balance with a robust algorithm for the solution of
the resulting system of nonlinear equations. Because of the
convolution-based sample-balance technique, this approach per-
mits the analysis of highly nonlinear circuits without increasing
the computational effort and the algorithm used can be almost
an order of magnitude faster than Newton’s method. It should
therefore be considered as an alternative to the latter in other
nonlinear circuit analysis applications. The excellent results
which can be achieved by this approach were demonstrated by
simulating a Sckottky diode and a MESFET.
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Phase Shift Determination of Imperfect Open
Calibration Standards

Gary Biddle

Abstract —A new measurement technique for determining the inher-
ent phase shift of open calibration standards for network analyzers due
to fringing capacitance is presented. The resultant phase shift is directly
measured using an uncalibrated network amalyzer and requires no
modeling of coefficients of capacitance as conventional methods do. An
exact expression for the phase shift of an imperfect open is derived for
each frequency point. Two sets of standard one-port error equations are
developed for the application. The traditional set of calibration stan-
dards, the match, short, and imperfect open, are used. The standards
are measured twice: once at the reference plane and then offset by a
precision piece of air line. Results are presented for the phase shifts of a
few open calibration standards at discrete frequencies.

1. INTRODUCTION

Network analyzers have been used extensively to characterize
microwave components and devices for several decades. Im-
provements in instrumentation hardware, computer availability,
and new calibration standards and procedures have enhanced
measurement capabilities.

Initially, with the formulation of signal flow graphs well docu-
mented, early works by Hackborn [1] and Hand [2] introduced
the automatic network analyzer system. Attention focused on
hardware description, calibration procedures, and measurement
accuracy. The error models appearing in these works were
eight-term with the following calibration standards: the match,
the short, and the offset short.

A few years later, an open calibration standard was intro-
duced as an option to the offset short by Kruppa [3]. By 1978 it
was known and pointed out in works by Rehnmark [4], daSilva
and McPhun [5], and Fitzpatrick [6] that opens were imperfect
because of radiation and stray capacitance.

The phase shift of an imperfect open was addressed by
daSilva and McPhun. The measurement procedure required
four test pieces with identical terminations, identical propaga-
tion factors for offsets of prescribed lengths, and a short circuit
test piece. A total of five measurements were required.

Hewlett Packard approached the phase shift problem of an
imperfect open in a different manner. In Application Note
221A, an accuracy enhancement program using coefficients of
capacitance to correct for the residual fringing effects of a
shielded open was presénted. The resultant phase shift was
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modeled as a function of frequency. The coefficients of capaci-
tance were then chosen to best fit the selected measurement
responses.

In this paper, a new measurement technique that obtains the
phase shift directly is presented. The conventional calibration
standards are used: the match (fixed and/or sliding load), the
short, and the imperfect open. One piece of precision air line is
also required.

In contrast to prior measurement procedures, no special test
pieces are needed, no identical terminations or propagation
factors for prescribed lengths are required, and no coefficients
of capacitance are required.

II. ErrorR EquaTiONS

This section shows the two sets of error equations needed to
determine the phase shift of the imperfect open. The conven-
tional methods of signal flow analysis, using Mason’s rule, are
employed. The well-known one-port error network is obtained.

In order to determine the open’s phase shift, a total of six
measurements must be made. The first set of measurements
require the three standards to be measured at a reference plane.
The error terms of the reference plane are unknown. Thus it is
an uncalibrated measurement. '

The second set of measurements require the three standards
to be measured again at the same reference plane but offset
with a precision piece of air line. Again the error terms are
unknown and the measurement is uncalibrated. The introduc-
tion of the air line into the second set of measurements has
added an additional propagation factor which is unknown.

The reflection coefficients of the calibration standards and
the propagation factor of the air line appear in the error
network diagrams. The three reflection coefficients are treated
as follows. '

The match in the ideal case is reflectionless, thus having a
reflection coefficient of zero. The reflection coefficient of the
match is represented as zero in the error equations. The stan-
dard practice of utilizing the sliding load at higher frequencies

'to enhance the measurement of the true system directivity is

used.

The short in the ideal case reflects all the incident energy with
a phase inversion at all frequencies. The reflection coefficient of
the short is represented as {1} with an argument of 7 in the
error equations, The precision shorts found in 3.5 mm, 7 mm,
and 14 mm calibration kits have very low residual inductance;
thus they may be considered ideal for this measurement tech-
nique.

The open in the ideal case reflects all the incident energy with
no phase shift. In practice, there is an appreciable phase shift
associated with an open. The reflection coefficient of the imper-
fect open is represented as /1] with an unknown argument in the
error equations. Thus only four measurements can be made of
known calibration standards.

The precision piece of air line is required to offset the
calibration standards. The air line is considered to be reflection-
less with unknown propagation factors and length. It is depicted
as such, ,

The flow graphs for the two sets of error equations are shown
in Fig. 1 and Fig. 2. The upper flow graph depicts the standard
one-port error network. The lower flow graph depicts a one-port
error network which includes an additional offset.

The variable T, is the reflection coefficient measured at the
analyzer’s measurement plane, while T, represents the reflec-
tion coefficient of the calibration standard applied at the refer-
ence plane. In the conventional way, the three error terms
exp(— kI) represents the offset introduced by the reflectionless
air line.
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